回帖0
精华
阅读权限90
在线时间 小时
听众
收听
好友
|
发表于 2018-1-6 22:55:47
|
显示全部楼层
第七题解答
设$u,v\in C^1 (\mathbb R^2)$, 且
\[u(x+1,y)=u(x,y+1)=u(x,y), v(x+1,y)=v(x,y+1)=v(x, y),\forall x,y\in\mathbb R,\]
求
\[\iint\limits_{[0,1]\times [0,1]}\det \left(%
\begin{array}{cc}
1+u_x(x,y) & u_y(x,y) \\
v_x(x,y) &1+v_y(x,y) \\
\end{array}%
\right)dxdy.\]
解 先证: 若$u,v\in C^1 ([0,1]\times [0,1])$, 则
\begin{align*}\iint\limits_{[0,1]\times
[0,1]}(u_x(x,y)v_y(x,y)-u_y(x,y)v_x(x,y))dxdy &=\int_0^1
(u(1,y)v_y(1,y)-u(0,y)v_y(0,y))dy\\
&-\int_0^1 (u(x,1)v_x(x,1)-u(x,0)v_x(x,0))dx.\end{align*} 事实上, 若$u,v\in C^2 ([0,1]\times [0,1])$, 则
\begin{align*}\iint\limits_{[0,1]\times
[0,1]}(u_x(x,y)v_y(x,y)-u_y(x,y)v_x(x,y))dxdy
&=\iint\limits_{[0,1]\times
[0,1]}((uv_y)_x-(uv_x)_y)dxdy\\
&=\int_0^1
(u(1,y)v_y(1,y)-u(0,y)v_y(0,y))dy\\
&-\int_0^1 (u(x,1)v_x(x,1)-u(x,0)v_x(x,0))dx.\end{align*}
对一般的$u,v\in C^1 ([0,1]\times [0,1])$的情况, 必存在$\{u_n\},\{v_n\}\subset C^2 ([0,1]\times [0,1])$, 使得$\{u_n\}$, $\{v_n\}$ 以及它们的一阶偏导数函数列都在$[0,1]\times [0,1]$上一致收敛. 在上式中将$u, v$ 分别换成$u_n, v_n$, 令 $n \to\infty$, 在积分号下取极限即得所需结果.
根据已证结果, 若$u,v\in C^1(\mathbb R^2)$ 且满足题设的周期条件, 则必有
\[\iint\limits_{[0,1]\times [0,1]}(u_x(x,y)v_y(x,y)-u_y(x,y)v_x(x,y))dxdy=0.\]
如此这般, 最后不难得到
\[\iint\limits_{[0,1]\times [0,1]}\det \left(%
\begin{array}{cc}
1+u_x(x,y) & u_y(x,y) \\
v_x(x,y) &1+v_y(x,y) \\
\end{array}%
\right)dxdy=1.\] |
|